For Supervisor's use only

2

90308

Level 2 Chemistry, 2003

90308 Describe the nature of structure and bonding in different substances

Credits: Four 2.00 pm Monday 24 November 2003

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

A Periodic Table is printed on page 2 of this booklet.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the pages provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–10 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Achievement Criteria For Assessor's use only				
Achievement	Achievement with Merit	Achievement with Excellence		
Describe the bonding in simple molecules and the nature of various types of solids.	Link selected properties of simple molecules and different types of solids to their structure.	Explain selected properties of substances in terms of structure and bonding.		
Overall Level of Performance				

S
\vdash
Z
Ш
⋝
Ш
ᆜ
Ш
Ш
T
Ē
Ĺ
$\overline{}$
_
ш
_
፲
BL
ABL
BL
ABL
IIODIC TABL
RIODIC TABL

2 He 4.0	10 Ne 20.2	18 Ar 40.0	36 Kr 83.8	54 Xe 131	86 Rn 222	
17	9 F 19.0	17 CI 35.5	35 Br 79.9	53 127	85 At 210	
9	8 0 16.0	16 S 32.1	34 Se 79.0	52 Te 128	84 Po 210	
15	7 N 14.0	15 P 31.0	33 As 74.9	51 Sb 122	83 Bi 209	
4	6 C 12.0	14 Si 28.1	32 Ge 72.6	50 Sn 119	82 Pb 207	
13	5 B 10.8	13 AI 27.0	31 Ga 69.7	49 In 115	81 TI 204	
		12	30 Zn 65.4	48 Cd 112	80 Hg 201	
	1SS	11	29 Cu 63.5	47 Ag 108	79 Au 197	
	Atomic Mass	10	28 Ni 58.7	46 Pd 106	78 Pt 195	
=	\neg	6	27 Co 58.9	45 Rh 103	77 Ir 192	109 Mt
I		80	26 Fe 55.9	44 Ru 101	76 0s 190	108 Hs
Atomic Number 1		7	25 Mn 54.9	43 Tc 98.9	75 Re 186	107 Bh
Ator		9	24 Cr 52.0	42 Mo 95.9	74 W 184	106 Sg
		2	23 V 50.9	41 Nb 92.9	73 Ta 181	105 Db
		4	22 Ti 47.9	40 Zr 91.2	72 Hf 179	104 Rf
		က	21 Sc 45.0	39 Y 88.9	71 Lu 175	103 Lr 262
8	4 Be 9.0	12 Mg 24.3	20 Ca 40.1	38 Sr 87.6	56 Ba 137	88 Ra 226
-	3 Li 6.9	11 Na 23.0	19 K 39.1	37 Rb 85.5	55 Cs 133	87 Fr 223

70	102
Yb	No
173	255
69	101
Tm	Md
169	258
68	100
Er	Fm
167	257
67	99
Ho	Es
165	254
66	98
Dy	Cf
163	251
65	97
Tb	Bk
159	249
64	96
Gd	Cm
157	247
63	95
Eu	Am
152	241
62	94
Sm	Pu
150	239
61	93
Pm	Np
147	237
60	92
Nd	U
144	238
59	91
Pr	Pa
141	231
58	90
Ce	Th
140	232
57	89
La	Ac
139	227

Lanthanide Series

Actinide Series

You are advised to spend 45 minutes answering the questions in this booklet.

Assessor's use only

QUESTION ONE: Volcanic Eruptions

When volcanoes erupt, a number of gases may be released. These include sulfur dioxide (SO_2), carbon dioxide (CO_2), hydrogen sulfide (H_2S) and water vapour (H_2O). At the surface, sulfur dioxide may also oxidise to form sulfur trioxide (SO_3).

Complete the table below by:

- (a) drawing a Lewis structure (electron dot diagram) for EACH of the formulae
- (b) naming the shape for CO₂, H₂S and SO₃.

Formula of molecule	(a) Lewis structure	(b) Name of shape
SO ₂		bent or V-shaped
CO ₂		
H ₂ S		
H ₂ O		bent or V-shaped
SO ₃		

CO ₂	
The shapes of S	SO_2 and H_2O molecules are both described as bent or V-shaped. are drawn below, with approximate bond angles shown.
	S O
0/	
0	0 H H
0	120° 109°
O Explain why the	120° 109° bond angles in these two molecules are different.
O Explain why the	120° 109°
O Explain why the	120° 109° bond angles in these two molecules are different.
	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.
Following an er water and react	120° 109° bond angles in these two molecules are different. uption, lakes and streams become more acidic due to SO ₂ dissolving in the ling with it.

QUESTION TWO: Changing States

Assessor's use only

Complete the table below by:

- (a) identifying the type of particle in EACH solid as atoms **or** ions **or** molecules
- (b) naming the attractive force that is broken when EACH solid melts
- (c) stating whether the relative melting point of EACH solid is high **or** low.

Name of solid	Type of solid	(a) Type of particle in solid – atoms or ions or molecules	(b) Attractive force broken when solid melts	(c) Relative melting point – high or low
ice (H ₂ O)	molecular			
silicon dioxide (SiO ₂)	covalent network			
iron (Fe)	metallic			
potassium chloride (KCI)	ionic			

QUESTION THREE: Halogens and their Compounds

Assessor's use only

The elements in Group 17 of the periodic table are called halogens.

(a) (i) Complete the table below to show the states of the first four halogens at room temperature (25 $^{\circ}$ C).

Name of halogen	Formula	Melting point °C	Boiling point °C	State at 25°C
fluorine	F ₂	-220	-188	
chlorine	Cl ₂	-101	-35	
bromine	Br ₂	-7	59	
iodine	I ₂	114	184	solid

(ii)	Describe how the state of bromine at room temperature (25°C) can be determined from the data given.

(b) The table below shows three properties of iodine crystals (I_2) .

Explain, in terms of the **structure and bonding** within the solid, **why** the solid has EACH of the properties stated.

Property	Explanation in terms of structure and bonding within the solid
lodine crystals will readily sublime (change from a solid to a gas) when heated gently over a Bunsen burner.	
lodine crystals are more soluble in cyclohexane than in water.	
lodine crystals do not conduct electricity.	

(c)	Magnesium chloride (MgCl ₂) and sulfur dichloride (SCl ₂) are both chlorides of Row 3 elements.
	Describe the type of bonding present in solid samples of EACH of these chlorides.

Assessor's use only

QUESTION FOUR: Allotropes of Carbon

Assessor's use only

Diamond and graphite are allotropes of carbon. This means that they are both made only of carbon atoms but the atoms are arranged differently, which results in different physical forms of the same element.

Some uses of diamond and graphite are shown below.

Allotrope	Use(s)	
Diamond	 Used to make saws to cut marble 	
Graphite	Used as a solid lubricant in machineryUsed to make electrodes	

Discuss the structure and bonding within diamond and graphite, and relate this to the uses shown in the table above.		

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

Question Number	

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

Question Number	